Browsing by Author "Bishop, Janice L."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemA synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter(2009) Murchie, Scott L.; Mustard, John F.; Ehlmann, Bethany L.; Milliken, Ralph E.; Bishop, Janice L.; McKeown, Nancy K.; Noe Dobrea, Eldar Z.; Seelos, Frank P.; Buczkowski, Debra L.; Wiseman, Sandra M.; Arvidson, Raymond E.; Wray, James J.; Swayze, Gregg A.; Clark, Roger N.; Des Marais, David J.; McEwen, Alfred S.; Bibring, Jean-PierreMartian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4-3.9 mu m wavelength range, coordinated with higher-spatial resolution HiRISE and Context Imager images. MRO's new high-resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitie on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9-10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate-bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian-aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life.
- ItemCharacterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate(2009) McKeown, Nancy K.; Bishop, Janice L.; Noe Dobrea, Eldar Z.; Ehlmann, Bethany L.; Parente, Mario; Mustard, John F.; Murchie, Scott L.; Swayze, Gregg A.; Bibring, Jean-Pierre; Silver, Eli A.Mawrth Vallis contains one of the largest exposures of phyllosilicates on Mars. Nontronite, montmorillonite, kaolinite, and hydrated silica have been identified throughout the region using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In addition, saponite has been identified in one observation within a crater. These individual minerals are identified and distinguished by features at 1.38-1.42, approximately 1.91, and 2.17-2.41 mu m. There are two main phyllosilicate units in the Mawrth Vallis region. The lowermost unit is nontronite bearing, unconformably overlain by an Al-phyllosilicate unit containing montmorillonite plus hydrated silica, with a thin layer of kaolinite plus hydrated silica at the top of the unit. These two units are draped by a spectrally unremarkable capping unit. Smectites generally form in neutral to alkaline environments, while kaolinite and hydrated silica typically form in slightly acidic conditions; thus, the observed phyllosilicates may reflect a change in aqueous chemistry. Spectra retrieved near the boundary between the nontronite and Al-phyllosilicate units exhibit a strong positive slope from 1 to 2 mu m, likely from a ferrous component within the rock. This ferrous component indicates either rapid deposition in an oxidizing environment or reducing conditions. Formation of each of the phyllosilicate minerals identified requires liquid water, thus indicating a regional wet period in the Noachian when these units formed. The two main phyllosilicate units may be extensive layers of altered volcanic ash. Other potential formational processes include sediment deposition into a marine or lacustrine basin or pedogenesis.
- ItemInterpretation of reflectance spectra of clay mineral-silica mixtures: implications for Martian clay mineralogy at Mawrth Vallis(2011) McKeown, Nancy K.; Bishop, Janice L.; Cuadros, Javier; Hillier, Stephen; Amador, Elena; Makarewicz, Heather D.; Parente, Mario; Silver, Eli A.The Al-clay-rich rock units at Mawrth Vallis, Mars, have been identified as mixtures of multiple components based on their spectral reflectance properties and the known spectral character of pure clay minerals. In particular, the spectral characteristics associated with the approximately 2.2 mu m feature in Martian reflectance spectra indicate that mixtures of AlOH- and SiOH-bearing minerals are present. The present study investigated the spectral reflectance properties of the following binary mixtures to aid in the interpretation of remotely acquired reflectance spectra of rocks at Mawrth Vallis: kaolinite-opal-A, kaolinite-montmorillonite, montmorillonite-obsidian, montmorillonite-hydrated silica (opal), and glass-illite-smectite (where glass was hydrothermally altered to mixed-layer illite-smectite). The best spectral matches with Martian data from the present study's laboratory experiments are mixtures of montmorillonite and obsidian having approximately 50% montmorillonite or mixtures of kaolinite and montmorillonite with approximately 30% kaolinite. For both of these mixtures the maximum inflection point on the long wavelength side of the 2.21 mu m absorption feature is shifted to longer wavelengths, and in the case of the kaolinite-montmorillonite mixtures the 2.17 mu m absorption found in kaolinite is of similar relative magnitude to that feature as observed in CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data. The reflectance spectra of clay mixed with opal and of hydrothermally altered glass-illite-smectite did not represent the Martian spectra observed in this region as well. A spectral comparison of linear vs. intimate mixtures of kaolinite and montmorillonite indicated that for these sieved samples the intimate mixtures are very similar to the linear mixtures with the exception of the altered glass-illite-smectite samples. However, the 2.17 mu m kaolinite absorption is stronger in the intimate mixtures than in the equivalent linear mixture. Modified Gaussian modeling of absorption features observed in reflectance spectra of the kaolinite-montmorillonite mixtures indicated a strong correlation between percent kaolinite in the mixture and the ratio of the area of the 2.16 mu m band found in kaolinite to the area of the 2.20 mu m band found in montmorillonite.
- ItemMineralogy and morphology of geologic units at Libya Montes, Mars: ancient aqueously derived outcrops, mafic flows, fluvial features, and impacts(2013) Bishop, Janice L.; Tirsch, Daniela; Tornabene, Livio L.; Jaumann, Ralf; McKeown, Nancy K.There is ample evidence of both ancient and long-lasting fluvial activity and chemical alteration in the Libya Montes region south of Isidis Basin. The region hosts Noachian to Amazonian aged surface rocks with extensive outcrops of olivine- and pyroxene-bearing material. Libya Montes also features surface outcrops and/or deposits hosting Fe/Mgsmectite, Fe/Mg-smectite mixed with carbonate and/or other Fe/Mg-rich phyllosilicates, and Al-smectite. These units likely formed through chemical alteration connected with hydrothermal activity resulting from the formation of the Isidis Basin and/or the pervasive fluvial activity throughout this region. The morphology and stratigraphy of the aqueous and mafic minerals are described using High Resolution Imaging Science Experiment and High Resolution Stereo Camera derived digital terrain models. Analyses of the Compact Reconnaissance Imaging Spectrometer for Mars spectra show variations in the chemistry of the Fe/Mg-smectite from nontronite-like exposures with spectral features near 2.29 and 2.4 mm more consistent with Fe3+ 2 OH groups in the mineral structure, and saponite-like outcrops with spectral features near 2.31 and 2.38 mm characteristic of Mg2+ 3 OH groups. These Fe/Mg-smectite bearing materials also have bands near 1.9 mm due to H2O and near 2.5 mm that could be due to the smectite, other phyllosilicates, and carbonates. All regions exhibiting carbonate features near 3.4–3.5 mm also have features consistent with the presence of olivine and Fe/Mg-smectite, indicating that the carbonate signatures occur in rocks likely containing a mixture of these minerals. The Al-smectite-bearing rocks have bands near 1.41, 1.91, and 2.19 mm that are more consistent with beidellite than other Al-phyllosilicates, indicating a higher-temperature or diagenetically processed origin for this material. Our interpretation of the geologic history of this region is that ancient Noachian basaltic crustal materials experienced extensive aqueous alteration at the time of the Isidis impact, during which the montes were also formed, followed by emplacement of a rough olivine-rich lava or melt, and finally the smooth pyroxene-bearing caprock unit.
- ItemMineralogy and stratigraphy of phyllosilicate‐bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: constraints on geological origin(2010) Noe Dobrea, Eldar Z.; Bishop, Janice L.; McKeown, Nancy K.; Fu, R.; Rossi, C. M.; Michalski, Joseph R.; Heinlein, C.; Hanus, V.; Poulet, Francois; Mustard, John F.; Murchie, Scott L.; McEwen, Alfred S.; Swayze, Gregg A.; Bibring, Jean-Pierre; Malaret, E.; Hash, C.Analyses of MRO/CRISM images of the greater Mawrth Vallis region of Mars affirm the presence of two primary phyllosilicate assemblages throughout a region ∼1000 × 1000 km. These two units consist of an Fe/Mg‐phyllosilicate assemblage overlain by an Al‐phyllosilicate and hydrated silica assemblage. The lower unit contains Fe/Mg‐ smectites, sometimes combined with one or more of these other Fe/Mg‐phyllosilicates: serpentine, chlorite, biotite, and/or vermiculite. It is more than 100 m thick and finely layered at meter scales. The upper unit includes Al‐smectite, kaolin group minerals, and hydrated silica. It is tens of meters thick and finely layered as well. A common phyllosilicate stratigraphy and morphology is observed throughout the greater region wherever erosional windows are present. This suggests that the geologic processes forming these units must have occurred on at least a regional scale. Sinuous ridges (interpreted to be inverted channels) and narrow channels cut into the upper clay‐bearing unit suggesting that aqueous processes were prevalent after, and possibly during, the deposition of the layered units. We propose that layered units may have been deposited at Mawrth Vallis and then subsequently altered to form the hydrated units. The Fe/Mg‐phyllosilicate assemblage is consistent with hydrothermal alteration or pedogenesis of mafic to ultramafic rocks. The Al‐phyllosilicate/hydrated silica unit may have formed through alteration of felsic material or via leaching of basaltic material through pedogenic alteration or a mildly acidic environment. These phyllosilicate‐bearing units are overlain by a darker, relatively unaltered, and indurated material that has probably experienced a complex geological history.
- ItemMineralogy of Juventae Chasma: sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau(2009) Bishop, Janice L.; Parente, Mario; Weitz, Catherine M.; Noe Dobrea, Eldar Z.; Roach, Leah H.; Murchie, Scott L.; McGuire, Patrick C.; McKeown, Nancy K.; Rossi, Christopher M.; Brown, Adrian J.; Calvin, Wendy M.; Milliken, Ralph E.; Mustard, John F.Juventae Chasma contains four light-toned sulfate-bearing mounds (denoted here as A-D from west to east) inside the trough, mafic outcrops at the base of the mounds and in the wall rock, and light-toned layered deposits of opal and ferric sulfates on the plateau. Hyperspectral visible/near-infrared Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra were used to identify monohydrated and polyhydrated sulfate (PHS) outcrops of layered material on the bright mounds. Most of the monohydrated sulfate signatures closely resemble those of szomolnokite (FeSO (sub 4) H (sub 2) O), characterized by a water band near 2.08 mu m, while some areas exhibit spectral features more similar to those of kieserite (MgSO (sub 4) H (sub 2) O), with a band centered closer to 2.13 mu m. The largest PHS outcrops occur on the top of mound B, and their spectral features are most consistent with ferricopiapite, melanterite, and starkeyite, but a specific mineral cannot be uniquely identified at this time. Coordinated analyses of CRISM maps, Mars Orbiter Laser Altimeter elevations, and High Resolution Imaging Science Experiment images suggest that mounds A and B may have formed together and then eroded into separate mounds, while mounds C and D likely formed separately. Mafic minerals (low-Ca pyroxene, high-Ca pyroxene, and olivine) are observed in large approximately 2-10 km wide outcrops in the wall rock and in smaller outcrops approximately 50-500 m across at the floor of the canyon. Most of the wall rock is covered by at least a thin layer of dust and does not exhibit strong features characteristic of these minerals. The plateau region northwest of Juventae Chasma is characterized by an abundance of light-toned layered deposits. One region contains two spectrally unique phases exhibiting a highly stratified, terraced pattern. CRISM spectra of one unit eroded into swirling patterns with arc-like ridges exhibit a narrow 2.23-mu m band assigned to hydroxylated ferric sulfate. A thin layer of a fractured material bearing an opaline silica phase is observed at the contact between the older plateau unit and the younger hydroxylated ferric sulfate-bearing light-toned layered deposits. Hydrothermal processes may have produced an acidic environment that fostered formation of the hydrated silica and hydroxylated ferric sulfate units.
- ItemNear-Infrared imaging spectroscopy of the surface of Mars at meter-scales to constrain the geological origin of hydrous alteration products, identify candidate sites and samples for future in-situ and sample return missions, and guide rover operations(2009) Noe Dobrea, Eldar Z.; Murchie, Scott L.; Mustard, John F.; Bishop, Janice L.; McKeown, Nancy K.Near-infrared (NIR; 1-4 um) imaging spectroscopy of Mars has proven itself to be critical in the identification and mapping of the distribution of aqueous alteration products on Mars, and has also been a key player in the process of Landing Site Selection for MSL. In this paper, we argue that increasing the spatial resolution to the meter scale from orbit, and mounting a NIR imaging spectrometer or hyperspectral imager on a rover will result in significant scientific benefits including 1) the identification of new hydrous minerals, 2) setting better constraints of spatial and stratigraphic distribution of the hydrous minerals within outcrops, 3) characterization of bed and unit boundaries and transitions, and 4) identification and analysis of smaller features apparent at MOC and HiRISE scales. In addition to improving the scientific return of both orbital and rover missions, high spatial resolution NIR imaging spectrometers will be critical in the traverse selection, operations, and sample acquisition of future rover missions.
- ItemPhyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars(2008) Bishop, Janice L.; Noe Dobrea, Eldar Z.; McKeown, Nancy K.; Parente, Mario; Ehlmann, Bethany L.; Michalski, Joseph R.; Milliken, Ralph E.; Poulet, Francois; Swayze, Gregg A.; Mustard, John F.; Murchie, Scott L.; Bibring, Jean-PierreObservations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)--smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe²⁺ phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)--rich units. Fe²⁺-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history.
- ItemPotential desiccation cracks on Mars: a synthesis from modeling, analogue-field studies, and global observations(2014) El-Maarry, M. R.; Watters, Wesley Andrés; McKeown, Nancy K.; Carter, John; Noe Dobrea, Eldar Z.; Bishop, Janice L.; Pommerol, Antoine; Thomas, NicholasPotential desiccation polygons (PDPs) are polygonal surface patterns that are a common feature in Noachian-to-Hesperian-aged phyllosilicate- and chloride-bearing terrains and have been observed with size scales that range from cm-wide (by current rovers) to 10s of meters-wide. The global distribution of PDPs shows that they share certain traits in terms of morphology and geologic setting that can aid identification and distinction from fracturing patterns caused by other processes. They are mostly associated with sedimentary deposits that display spectral evidence for the presence of Fe/Mg smectites, Al-rich smectites or less commonly kaolinites, carbonates, and sulfates. In addition, PDPs may indicate paleolacustrine environments, which are of high interest for planetary exploration, and their presence implies that the fractured units are rich in smectite minerals that may have been deposited in a standing body of water. A collective synthesis with new data, particularly from the HiRISE camera suggests that desiccation cracks may be more common on the surface of Mars than previously thought. A review of terrestrial research on desiccation processes with emphasis on the theoretical background, field studies, and modeling constraints is presented here as well and shown to be consistent with and relevant to certain polygonal patterns on Mars.
- ItemReflectance spectroscopy of beidellites and their importance for Mars(2011) Bishop, Janice L.; Gates, W. P.; Makarewicz, H. D.; McKeown, Nancy K.; Hiroi, T.Beidellites may exist on Mars and represent intermediate alteration products; their presence would indicate different alteration environments than previously identified because montmorillonite is a low-grade alteration mineral, whereas beidellite is a higher-temperature alteration mineral and often represents a step toward illite formation. The reflectance spectra of beidellites are under study to support their orbital detection on Mars, where spectral signatures of other Al-rich phyllosilicates have been observed. Reflectance spectra of ten Al-rich smectites are presented here which include pure beidellites and Al smectites having compositions between those of beidellite and montmorillonite, and emphasis is placed here on the OH combination bands near 4545 cm (super -1) (2.2 mu m) as these vibrational features are commonly used in the identification of phyllosilicates on Mars. Shifts were observed in the Al (sub 2) OH band centers, which occur near 4590 cm (super -1) (2.18 mu m) in reflectance spectra of beidellite and near 4525 cm (super -1) (2.21 mu m) in reflectance spectra of montmorillonite. These are compared with the Al (sub 2) OH bending vibrations observed near 941-948 cm (super -1) (10.5-10.6 mu m) for beidellite and near 918-926 cm (super -1) (10.8-10.9 mu m) for montmorillonite. Although the octahedral site cation composition provides the greatest influence on the vibrational energies of the M (sub 2) OH groups, the tetrahedral site cation composition also influences these vibrations. Shifts were observed in the Si-O-Al bending vibrations from 552 and 480 cm (super -1) (18.1 and 20.8 mu m) in beidellite spectra to 544 and 475 cm (super -1) (18.4 and 21.0 mu m) in montmorillonite spectra. Gaussian modeling of the 4545 cm (super -1) (2.2 mu m) bands led to the discrimination of four overlapping bands in each of the ten Al smectite spectra examined in this study. Shifts in the band center and area of the primary spectral band are coordinated with substitution of Al for Si in the tetrahedral sheet. This is consistent with beidellites having a greater tetrahedral layer charge than montmorillonites. The observed spectral differences were sufficiently large that these Al-rich smectites can be differentiated in orbital data of Mars. A pure beidellite-type spectrum is observed in an isolated Al phyllosilicate-bearing outcrop in Libya Montes, a region where Fe-rich smectite is common but Al-rich smectite is rare. Beidellite-type reflectance spectra were also observed in one area of the Nili Fossae region. In contrast, a variety of Al phyllosilicates were found in the ancient rocks at Mawrth Vallis, including some smaller clay-bearing regions exhibiting spectral signatures more consistent with beidellite-like than montmorillonite-like chemistry.
- ItemThe Mawrth Vallis region of Mars; a potential landing site for the Mars Science Laboratory (MSL) mission(2010) Michalski, Joseph R.; Bibring, Jean-Pierre; Poulet, Francois; Loizeau, D.; Mangold, Nicholas; Noe Dobrea, Eldar Z.; Bishop, Janice L.; Wray, James J.; McKeown, Nancy K.; Parente, Mario; Hauber, E.; Altieri, Francesca; Carrozzo, Filippo. Giacomo; Niles, Paul B.The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 106 km2) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.
- ItemVariability of rock texture and morphology correlated with the clay-bearing units at Mawrth Vallis, Mars(2013) McKeown, Nancy K.; Bishop, Janice L.; Silver, Eli A.The clay units at Mawrth Vallis have been well-characterized in hyperspectral data; however, a similar study of high spatial resolution High Resolution Imaging Science Experiment (HiRISE) data has not been previously conducted. Here the textures of the clay units are described and related to mineralogy across the central Mawrth Vallis region. The nontronite-bearing rocks appear tan in HiRISE COLOR data and are polygonally fractured with polygons 2–5m across. In some cases, the fractures appear wider and/or have darker fill or the rocks are a darker brown. The montmorillonite-bearing rocks appear blue with regular polygons 0.5–1.5m across; sometimes, there are larger polygons surrounded by regular polygons, a square fracture pattern, or the color appears yellow or mottled blue-yellow. Kaolinite-rich rocks are the brightest outcrops and are nonpolygonally fractured. Regions with spectra consistent with hydrated silica or the ferrous mineral component do not have unique textures. Hydrated silica-bearing rocks appear yellow or mottled with a regular polygonal texture or yellow with hummocky appearance with no polygons. It is also possible that dust/sand on the surface alters the montmorillonite spectrum to appear like that of hydrated silica. The ferrous component may be expressed as mottled coloring or as a bright fracture fill. The nontronite- and montmorillonite-bearing units have remarkably consistent textures in this region, allowing them to be uniquely identified in the Mawrth Vallis region in nonhyperspectral data sets such as CTX and HiRISE. The morphology of the polygons in these two units suggests that their formation is likely dominated by desiccation and controlled by composition.
- ItemWhat the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars(2013) Bishop, Janice L.; Loizeau, Damien; McKeown, Nancy K.; Saper, Lee; Dyar, M. Darby; Des Marais, David J.; Parente, Mario; Murchie, Scott L.Phyllosilicate deposits on Mars provide an opportunity to evaluate aqueous activity and the possibility that habitable environments may have existed during the Noachian period there. Analysis of hyperspectral visible/near-infrared (VNIR) Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) images has shown thick, complex profiles of phyllosilicates at Mawrth Vallis, Mars that are consistent with long-term aqueous activity and active chemistry. The ancient phyllosilicates in places such as this could have served as reaction centers for organic molecules. Previous experiments even suggest that phyllosilicates could have played a role in the origin of life. Regardless of whether life formed on early Mars or not, evaluating the type and thickness of clay-bearing units on Mars provides insights into plausible aqueous processes and chemical conditions both during the time of formation of the phyllosilicates, but also the subsequent period following their formation. The phyllosilicate outcrops at Mawrth Vallis extend across a broad (∼1000km) region and exhibit a consistent general trend of Al-phyllosilicates and amorphous Al/Si species at the top of the clay profile and Fe/Mg-phyllosilicates on the bottom. This implies either a change in water chemistry, a change in material being altered, or an alteration profile where the upper clays were leached and altered more significantly than those below. A change in iron in the phyllosilicate units is also observed such that an Fe2+-bearing unit is frequently observed between the Fe3+- and Mg-rich phyllosilicates below and the Al/Si-rich materials above. Abrupt changes in chemistry like this are often indicative of biogeochemical activity on Earth. Possible microbe-clay interactions are considered in comparison with the CRISM observations. This study evaluates CRISM spectra from four images of different outcrops across the Mawrth Vallis region and evaluates the observed phyllosilicates and clay components in terms of plausible aqueous and microbial processes and the potential for retention of biosignatures, if present.